Issue #9 - October 18th, 2007
Software Suite for Durability, Damage Tolerance, and Life Prediction
Augments FEA Solvers MSC Nastran*, ABAQUS, ANSYS & LS-DYNA
* Best Performance and Verified Solutions with MSC Nastran
This Week's Feature Metal Example
Prediction & Verification of Metal Fracture Toughness Tests Using Non-linear Static Stress-Strain Curve
|
Safe life prediction of components must be conducted to ensure the life adequacy of parts during service usage. In many cases fracture properties of material are not available because of 1) cost associated with generating fatigue and fracture data, 2) Inability to conduct tests because of time limitation and deadline set forth by the customers, and 3) lack of analytical tools to conduct a comprehensive crack tip stress analysis.
New material-physics based computational methodologies for assessing the plane-stress and the plane-strain fracture toughness (KC, KIC) and (da/dN versus Delta K curve) of the material have been used successfully in predicting these fracture allowables, knowing only the complete stress-strain behavior of the material of interest.
|
On the other hand, fatigue crack growth properties of the material are determined using the well known Newman Forman and Koening (FNK) equation requiring input from fracture toughness theoretical model. The analytical procedure relies on both implicit and explicit computational schemes and evaluates points in the threshold, Paris, and accelerated regions (Figure 2).
Once the fracture allowables are determined, the values can be further used to predict the S-N curve of the component using finite element method approach with Virtual Crack Closure Technique (VCCT). The formulation extends to fatigue crack growth and strength life prediction of notched and unnotched components. Scientists at Alpha STAR and TU Delft are extending the algorithm to composites.
Figure 3 - Process and Comparison of Fracture Toughness Versus Thickness [FTD] and da/dN Versus Delta K Curve [FCG] With The Test Data Provided in NASGRO for Ti-6Al-4V (Mill Annealed) [2]. |
Figure 3 shows the process and comparison of the results obtained using the two methodologies (Fracture Toughness Determination [FTD] and Fatigue Crack Growth [FCG]) for a Titanium alloy. Similar verification has been done with several other pure and alloyed materials, such as Aluminum alloy, Inconel, Steel, and many more.
|
The capability of the three step approach: 1) Fracture Toughness Determination, 2) Fatigue Crack Growth Determination, and S-N curve Determination was demonstrated Life Assessment of Boeing 747 crown Panel Fuselage Section (Figure 5).
Table 1 - Comparison between Test and Simulation Results for Life Assessment of Metallic Center Cracked Panel, As Shown In Figure 3 [2] |
Figure 5. Three Step Approach to Assess Life of the Stiffened Curved Panel Made of Aluminum Alloy [2] |
Figure 6 - Variation of Fracture Toughness with Variable Thickness [3] |
Figure 7 - Variation of Plane Stress (KC) and Threshold (Kth) Fracture Toughness Due to Variations in Material Properties. [3] |
Click here to receive demo and presentation of FTD & FCG.
References:
1. Farahmand, B., Fatigue and Fracture Mechanics of High Risk Parts, Chapman and Hall, 1997.
2. Farahmand, B., Saff, C., Xie, D., and Abdi, F., 2007. Estimation of Fatigue and Fracture Allowables for Metallic Materials Under Cyclic Loading. AIAA-2007-2381.Click here to read technical publication.
3. Farahmand, B., and Abdi, F., 2002. Probabilistic Fracture Toughness, Fatigue Crack Growth Estimation Resulting From Material Uncertainties. ASTM International Paper. Click here to read technical publication.
2. Farahmand, B., Saff, C., Xie, D., and Abdi, F., 2007. Estimation of Fatigue and Fracture Allowables for Metallic Materials Under Cyclic Loading. AIAA-2007-2381.Click here to read technical publication.
3. Farahmand, B., and Abdi, F., 2002. Probabilistic Fracture Toughness, Fatigue Crack Growth Estimation Resulting From Material Uncertainties. ASTM International Paper. Click here to read technical publication.
Did You Know?
Benefits from Virtual Simulation of ASTM Tests
Virtual simulation of ASTM tests using GENOA enables the qualification and characterization of aerospace materials. The successful replication of these tests provides the designer and analyst with a reliable tool to evaluate the component performance. Iterative designs can be made with GENOA until satisfactory performance is achieved. This capability eliminates redundant tests thereby expediting the component certification and delivery to market. For more information on this feature and trying out GENOA through our demos, please contact our sales at sales@ascgenoa.com.
This issue was brought to you by Alpha STAR Corporation.
If you do not want to receive this newsletter, please email genoa@ascgenoa.com with a "UNSUBSCRIBE" subject header.
If you do not want to receive this newsletter, please email genoa@ascgenoa.com with a "UNSUBSCRIBE" subject header.